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ABSTRACT: Seismic signals contain rich 

geological information about subsurface rock 

layers, but this information is often obtained in the 

form of noisy results due to complex environmental 

interference factors. The quality of the signal is 

directly related to the accuracy and reliability of the 

characteristics of the subsurface medium and the 

structure of the strata. Traditional methods, due to 

factors such as their algorithm model and 

limitations of prior knowledge, cannot achieve 

ideal results in processing increasingly complex 

seismic signals. In recent years, with the 

development of neural network technology, seismic 

signal denoising methods based on neural network 

technology have become a research hotspot. 

CycleGAN does not require paired seismic data 

and can automatically learn the mapping 

relationship between noisy and clean signals. In 

this paper, based on the improvement of 

CycleGAN, the convolution layer is replaced with 

a one-dimensional convolution layer suitable for 

seismic sequences, and an attention mechanism 

based on a Squeeze-and-Excitation Networks 

(SENet) is introduced to obtain a one-dimensional 

CycleGAN based on Squeeze-and-Excitation (1-D 

SE CycleGAN), which enables the network to 

focus more on noise features when dealing with 

one-dimensional seismic data. The simulation 

experiments and actual data processing 

experiments show that 1-D SE Cycle GAN can 

better focus on the useful signals and noise existing 

in the high-frequency part of the original signal, 

capture the key features of the seismic signal, and 

achieve noise reduction effects, further improving 

the resolution of the seismic signal. Compared with 

traditional methods, the denoising method of 1-D 

SE Cycle GAN can remove more noise and obtain 

signals with higher signal-to-noise ratios in both 

synthetic and actual seismic signals. It can also 

retain more details of the original seismic signals, 

making the stratigraphy and faults clearer. 

KEYWORDS: seismic signal, Cycle GAN, 

denoising. 

 

I. INTRODUCTION 
As seismic exploration advances and 

expands, more and more exploration areas become 

complex and diverse. The seismic signals collected 

under these harsh conditions usually contain various 

types of noise, such as natural noise, artificial noise, 

instrument noise, and signal processing noise, due 

to the complexity of the underground structure and 

limitations of the geophysical exploration 

equipment. Among them, signal processing noise 

refers to the noise introduced during the seismic 

signal processing. For example, interference during 

data acquisition and transmission, digital filtering, 

and other processing methods may introduce noise. 

Noise in seismic signals seriously interferes with the 

analysis and interpretation of seismic signals, 

directly affecting subsequent seismic signal 

processing steps such as high-resolution processing. 

Therefore, improving the signal-to-noise ratio and 

accuracy of seismic waveforms is the primary task 

in seismic signal processing. 
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Fig. 1. The working model of Cycle GAN. 

 

Noise in reality is often complex and 

diverse, and many traditional denoising methods are 

based on prior information such as the frequency or 

amplitude of the signal. Different models are 

established for different types of noise before 

denoising, including Gaussian white noise models, 

wavelet models, etc. [1-7]. Only by correct and 

appropriate modeling can we better grasp the 

statistical and time-frequency characteristics of 

noise. However, once the signal becomes too 

complex to model or the signal is below a high 

noise level, traditional methods may be limited or 

defective. Therefore, as seismic signals become 

increasingly complex and diverse, traditional 

research on seismic signal denoising methods has 

become increasingly challenging. In recent years, 

neural network-based seismic signal denoising 

methods do not require a large amount of prior 

knowledge, do not require manual design of 

complex feature extractors and filters, and can learn 

and represent the characteristics of complex seismic 

signals through deep network learning. They have 

strong non-linear modeling capabilities and can 

adapt to seismic signal denoising tasks under 

different acquisition conditions [8-12]. However, 

many deep learning techniques still lack in network 

learning ability and ability to retain seismic signal 

features, and require paired data. 

Generative Adversarial Networks (GAN) 

is an unsupervised neural network model proposed 

by Ian Goodfellow et al. in 2014 [13]. The GAN 

model consists of two parts: the generator and the 

discriminator, which use different objective 

functions. The model is trained by adversarial 

learning to generate high-quality sample data. Cycle 

GAN is a variant of GAN, which is an unsupervised 

image translation model based on GAN [14]. Cycle 

GAN has the ability to map between two domains 

and perform conditional adversarial learning, which 

allows it to better preserve the features of seismic 

signals even when paired data is not available. The 

powerful image transformation capability of Cycle 

GAN enables the network to learn and recognize the 

characteristics of noise by training on a training set 

that contains a wide range of noise types, and then 

convert seismic signals between the noisy and 

noise-free domains. Building on Cycle GAN, we 

propose and investigate a 1-D Cycle GAN network 

model for one-dimensional seismic signals. We 

decompose low signal-to-noise ratio (SNR) two-

dimensional seismic sections into single-trace 

seismic signals and process and transform each 

trace before reassembling them into high SNR two-

dimensional seismic sections. As noise in seismic 

signals is often fine-grained and the signals 

themselves contain valuable information, we focus 

on preserving and restoring the seismic signal 

during the denoising process. Attention mechanisms 

can improve the filtering effect of the model, 

allowing the network to more accurately distinguish 

between noise and signal, thus better preserving the 

useful information in seismic signals and further 

improving the denoising accuracy and effectiveness. 

By adding a channel-wise attention mechanism 

using a Squeeze-and-Excitation Network (SENet) to 

the 1-D Cycle GAN [15], we obtain a compressed 

and excited 1-D Cycle GAN (1-D SE Cycle GAN) 

that achieves better denoising results than the 

original 1-D Cycle GAN. 

 

II. METHOD 
A. 1-D SE Cycle GAN denoising method 

Fig. 1 shows the general framework of the proposed 

model. The generator GNtoC learns a mapping from 

N domain {Nreal} seismic images to C domains 

{Creal}: 
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Where GNtoC can be optimized by minimizing (1) 

in the iterative training of the network: 

 
)))](([log()( realNtoCCNtoC NGDEGL 

 
(2) 

The term "E[*]" represents the expected 

value, and DC is the discriminator that matches 

GCtoN, whose goal is to distinguish whether the 

input image comes from the real cleandata 

domain{Creal} or is generated by GNtoC. 

D(GNtoC(Nreal)) represents the probability that the 

discriminator DC judges the input GNtoC(Nreal) as 

coming from the real domain, where a value closer 

to 1 indicates that the discriminator is more likely 

to believe that GNtoC(Nreal) comes from the real 

domain. The optimization method of the 

discriminator is to minimize (3). The closer the 

result is to 1, the stronger the discrimination ability 

of DC, and the more accurate the judgment result. 

)))]((1log())([log()( realNtoCCrealCC NGDCDEDL 

 
(3)

 

In Cycle GAN, GCtoN is the mirror version of 

GNtoC, which aims to learn the mapping from 

clean data domain {Creal} to noisy data domain 

{Nreal}, generating the same image Ngen as the 

domain {Nreal} 

 )( realCtoNgen CGN   (4) 

Similarly,DN is the discriminator paired 

with GCtoN, whose goal is to distinguish as much as 

possible whether the input image comes from the 

real noisy data domain {Nreal} or is generated by 

GCtoN. 

The first stage of Cycle GAN is to train 

two sets of generators and discriminators that are 

each other's mirror images. In theory, adversarial 

training enables GCtoN and GNtoC to learn the 

transformation of each other's domain. However, 

when the sample size is large enough, the two 

generators can map the same input image set to any 

random arrangement of images in the target domain, 

and any learned mapping can induce an output 

distribution that matches the target distribution. 

Therefore, to compress the target space of the 

mapping function, Cycle GAN adds a cyclic loss 

objective function in the second stage to ensure 

cycle consistency: 

 

]))(([)(
1realrealLtoHHtoLcycle LRLRGGEGL 
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(5) 

Here, ||*||1 represents the L1 norm. A smaller result 

from (5) indicates that the images generated by the 

two generators are closer to the original images. 

Similarity (SSIM) is a widely used metric 

for image quality evaluation that considers the 

impact of image brightness, contrast, and structure 

information, based on the sensitivity of human eyes 

to structural information [16]. In high-resolution 

processing of seismic signals, we use SSIM as an 

evaluation metric to assess the similarity and 

signal-to-noise ratio improvement of seismic 

signals before and after processing, thereby 

determining the effectiveness and superiority of the 

algorithm. The simplified module coefficient SSIM 

algorithm is: 
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(6) 

Here, μ represents the brightness of the 

image, which indicates the average amplitude of 

the signal in a single seismic trace; σ represents the 

contrast of the image, which indicates the 

smoothness of the signal in a single seismic trace. 

To ensure the stability of the formula, a constant C 

is added. The SSIM value ranges from 0 to 1, 

where 1 indicates that two images are identical. 

When the SSIM value is close to 1, it means that 

the quality of the two images is very similar, and it 

is difficult for the human eye to distinguish their 

differences; while when the SSIM value is close to 

0, it means that there are significant differences in 

the quality of the two images. The SSIM loss does 

not have the generative and adversarial 

characteristics, therefore, for GNtoC, the generated 

signal used for comparison with the real signal Creal 

is not GNtoC(Nreal), but rather GNtoC(Creal): 

 
)),(( realrealNtoCNtoC CCGSSIMS 

 
(7) 

As a result, the corresponding SSIM objective 

functions for the two generators are: 

 )1()( NtoCNtoCSSIM SEGL —
 (8) 

and: 

 
)1()( CtoNCtoNSSIM SEGL —

 
(9) 

Therefore, we can represent the final objective 

function of Cycle GAN as follows: 

)()()()()(),( cycleNCCtoNNtoC GLDLDLGLGLDGL 

 

))()(( 21 CtoNSSIMNtoCSSIM GLGL ——  

 

(10) 

whereαand β1, β2 are adjustable coefficients. After 

experimental verification and balancing with other 

objective functions, we obtained the optimal 

parameters of 5 and 10, 10 respectively. 
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B. Network Architecture 

Inspired by Goodfellow, Zhu, et al, our 1-

D Cycle GAN belongs to the overall category of 

deep learning networks. After experimental testing, 

the optimal structure was obtained and is shown in 

Fig. 2. 

 
Fig. 2. The main network of the generator 

 

 
Fig. 3. The structure of the attention layer. 

 

Fig. 2 shows the main network of the 

generator, including the encoder, the residual 

network, and the decoder. The encoder consists of 

the first four layers, which include a convolutional 

layer and three convolutional+activation+LN layers. 

In the convolutional layer, "(7×1) ×32" represents 

32 one-dimensional convolution kernels of size 7×1 

with a stride of 1. They perform convolutions along 

the time/depth dimension of a seismic signal, 

producing 32 one-dimensional feature vectors. 

Leaky ReLU is used instead of ReLU for the 

activation layer, which has better training speed and 

effectiveness [17]. The generator uses LN for 

normalization, mainly because in seismic sequence 

data, the time dimension is usually a dimension of 

the sample data, and the differences between 

samples are often larger on this dimension than on 

other dimensions, resulting in traditional 

normalization being less effective on time-series 

data than on other types of data, such as images. 

During the training process, LN can keep the 

average output of the activation function around 1, 

preventing gradient vanishing or exploding and 

improving the stability and generalization 

performance of the model [18]. The residual 

network consists of four residual blocks and passes 

the input directly to the output through skip 

connections, which can effectively alleviate the 

problem of gradient vanishing during the training of 

deep neural networks and improve the training 

speed and accuracy of the model [19]. The residual 

network is connected to the decoder via an 

upsampling layer. The upsampling layer uses linear 

interpolation to calculate the interpolation by 

averaging the distance between two known data 

points to the interpolation point. The upsampling 

layer doubles the length of the output feature vector 

to keep the generator output the same length as the 

original input. 

The first three convolutional layers of the encoder 

have a stride of 1, while the fourth layer has a stride 

of 2, which reduces the length of the output feature 

vector to half the length of the input vector. This 

reduces the amount of data input to the residual 

network and improves the learning speed of the 

network. The first three layers of the decoder are the 

same as those of the encoder, except for the number 

of convolutional filters, and a Dropout layer is 

added after each layer. Adding Dropout layers in the 

encoder may destroy some important features of the 

input data, leading to a decrease in model 

performance. Meanwhile, in the decoder, some 

features used to generate samples may rely too 

much on certain features of the encoder, which may 

not correspond to key information in the real 

dataset. Therefore, during decoder training, Dropout 

randomly drops some neurons, preventing the 

decoder from relying too much on certain features 

of the encoder and improving the model's 

generalization ability [20]. 
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The output of the 12th layer of the 

generator is 32 feature vectors, which are fed into 

the attention layer. The feature vectors are first 

compressed into a single weight vector through a 

3×1×1 convolution layer and a softmax layer. The 

weight vector is then multiplied with the 32 feature 

vectors from the input to perform attention 

weighting, resulting in a weighted feature vector 

group. The feature vector group then goes through 

two layers of 3×1×32 convolution to obtain 32 

feature vectors with assigned weights, which are 

added back to the original input to recalibrate the 

features of each channel. The structure of the 

attention layer is shown in Fig. 3. 

The main network of the discriminator in 

Fig. 4 consists of five layers, similar to the encoder 

of the generator. Each layer has a convolutional 

stride of 2, and the last layer has a stride of 1 with a 

1x1 convolutional kernel. The output of the final 

layer is a feature vector containing 512 neurons, 

which is then connected to a sigmoid function to 

calculate a probability value. 

 

II. EXPERIMENT 
A. Training details 

To train a neural network with denoising 

capability, it is necessary to create datasets with 

both noisy and noise-free data. The noisy dataset 

needs to include multiple types of noise to ensure 

that the trained neural network has sufficient 

generalization ability and robustness. Our goal is to 

obtain high signal-to-noise ratio and visually clean 

seismic signals from noisy seismic signals with 

different noise levels and types. Fig. 4 is an example 

of creating a seismic dataset. 

 

 

Fig. 4. Structure of discriminator 

 

 

Fig. 5. Example of synthetic seismic signals with and without noise. (a. seismic signal generated by convolving 

synthetic reflection coefficients with a Ricker wavelet. b. Random Gaussian noise c. Seismic signal with random 

Gaussian noise added.) 

  

Fig. 5(a) shows an example of synthetic 

seismic signals with and without noise. Adding 

noise to a clean signal, it can be seen that the areas 

of the original signal with smaller amplitudes have 

been severely distorted by noise and lost their 

original waveform. We synthesized 30,000 

reflection coefficient sequences, each with 600 

sampling points. Then, we randomly extracted 

30,000 Ricker wavelets with frequencies between 

10-80 Hz from seismic signals, and convolved each 

of them with every reflection coefficient sequence 

to obtain 30,000 one-dimensional seismic signals 

without noise, which were used as the noise-free 

training set. Next, we divided these 30,000 noise-

free signals into three groups, each with 10,000 

signals, and added Gaussian white noise randomly 

selected from three different intervals of 0-5dB, 5-

10dB, and 10-15dB to them, resulting in 30,000 
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noisy signals with different noise levels, which were 

used as the noisy training set. These signals were 

paired and fed into the network for training. 

 

 
Fig. 6. Convergence effects of different gradient descent methods. (a. BGD method. b. SGD method c. Adam 

method.) 

 
After each mini-batch training, we 

randomly flip some discriminator losses with a 

flipping factor of 0.3, which means the 

complements of three out of ten discriminator 

results are set to 1. The training time and 

effectiveness of BGD, SGD [21], and Adam [22] 

backpropagation algorithms were tested separately. 

Fig. 6 shows the convergence effect of the generator 

GNtoC during the training process from 0 to 2000 for 

different gradient descent methods. 

It can be seen that when using the Adam 

method, the loss function of BGD and SGD 

methods did not converge between 180 and 800 

iterations, and the loss function tended to increase. 

This means that the network's performance was 

unstable during this period, and stopping the 

training would result in very poor seismic signals 

generated by the GNtoC generator. After 800 

iterations, all three methods tended to converge, but 

it can be seen from the comparison that the loss 

function of the Adam method is more stable and 

tends to a lower value. Table 1 shows the time 

required for training 2000 iterations under the three 

methods. The SGD method is the fastest, and its 

time is set to 1, while the time of the other two 

methods is normalized. A comprehensive analysis 

shows that Adam achieves the best training effect in 

a relatively short time. 

 

TABLE I.  TRAINING TIME (NORMALIZED) 

Method BGD SGD Adam 

Time cost 2.726 1 1.422 

 

B. Synthetic data experiment and analysis 

We randomly synthesized a reflection sequence and 

convolved it with a 40Hz Ricker wavelet to obtain a 

synthesized seismic signal. Then, we extended it to 

a 2D seismic section by 50 traces. Adding 5dB 

random Gaussian noise to the section resulted in a 

noisy signal. We then denoised the signal using two 

methods and showed the results in Fig. 7. 
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Fig. 7. The denoising performance of 1-D Cycle GAN and 1-D SE Cycle GAN at 5db noise level. (a. Noisy data 

b. Clean data c. Denoising performance of 1-D Cycle GAN d. Denoising performance of 1-D SE Cycle GAN) 

 
Fig. 7(a) shows the synthetic seismic 

signal with 5 dB noise added, while Fig. 7(b) shows 

the noise-free synthetic seismic signal. Fig. 7(c) 

and(d) display the denoising results of the 

conventional 1-D Cycle GAN method and the 1-D 

SE Cycle GAN-based method, respectively. It can 

be seen that the 1-D SE Cycle GAN-based method 

achieves better denoising performance. In addition, 

there is useful signal present in the red boxed area 

of the noise-free synthetic seismic signal, but the 

conventional 1-D Cycle GAN method fails to 

recover this useful part and leaves it contaminated 

by noise, leading to data loss. However, the 1-D SE 

Cycle GAN-based method preserves the 

information of this part and effectively removes the 

noise. The color residual sections of the denoising 

results are also shown in Fig. 8. It shows the 

residual sections after denoising with the above two 

methods. The useful information in the original 

signal can be seen to be removed by the regular 1-D 

Cycle GAN method in the area indicated by the red 

arrow, which may lead to significant loss of useful 

geological information and greatly affect the 

denoising effect. However, in Fig. 8(c), the residual 

of the 1-D SE Cycle GAN-based method is very 

close to that of the noise-free section in Fig. 8(a) 

and the residual of the noisy section, which means 

that the signal after denoising with the 1-D SE 

Cycle GAN-based method is very close to the 

original noise-free signal. 
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Fig. 8. Residual sections after denoising with two methods. (a. original residual section b. Residual section of 1-

D Cycle GAN method c. Residual section of 1-D SE Cycle GAN method.) 
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To further validate the advantages of the 1-

D SE Cycle GAN-based method, we synthesized 

noisy signals at different levels and compared the 

results of the traditional deconvolution method and 

the wavelet soft-thresholding denoising method 

with the 1-D SE Cycle GAN-based method. The 

results are shown in the following images. 

 

 
Fig. 9. The result of denoising experiment with noise level of 10dB (a. Noisy signal b. Result of denoising using 

traditional deconvolution method c. Result of denoising using wavelet soft thresholding method d. Result of 

denoising using 1-D SE Cycle GAN method) 

 

 
Fig. 10. The result of denoising experiment with noise level of 5dB (a. Noisy signal b. Result of denoising using 

traditional deconvolution method c. Result of denoising using wavelet soft thresholding method d. Result of 

denoising using 1-D SE Cycle GAN method) 
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Fig. 11. The result of denoising experiment with noise level of 1dB (a. Noisy signal b. Result of denoising using 

traditional deconvolution method c. Result of denoising using wavelet soft thresholding method d. Result of 

denoising using 1-D SE Cycle GAN method) 
 

In Fig. 9, at a noise level of 10 dB, the 

original section was less contaminated by noise, and 

the denoising effects of traditional deconvolution 

method, wavelet soft-thresholding denoising 

method, and the method based on 1-D SE Cycle 

GAN were all good. However, the section 

processed by the traditional deconvolution method 

still contained subtle noise, which was difficult to 

separate and filter out due to the spectrum being 

very close to that of the original signal. Comparing 

the results, it can be seen that the denoising results 

of the wavelet soft-thresholding method and the 

method based on 1-D SE Cycle GAN are both 

better than that of the traditional deconvolution 

method.In Fig. 10, at a noise level of 5dB, the result 

of the traditional deconvolution method still had 

obvious noise pollution, and the section after 

denoising by the wavelet soft thresholding method 

also had slight noise. This is because when the noise 

level is high, the energy of the noise signal is closer 

to the energy of the signal, making it difficult to 

distinguish between noise and signal coefficients in 

certain cases in the wavelet domain, making it 

difficult to accurately determine which coefficients 

are noise and which are signal coefficients. 

However, the 1-D SE Cycle GAN-based method 

still maintained its advantage. In Fig. 11, at a noise 

level of 1dB, the original section was severely 

contaminated by high-level noise, and most of the 

geological information was no longer visible. The 

results of the traditional deconvolution method and 

the wavelet soft thresholding method had obvious 

noise, while the denoising effect of the 1-D SE 

Cycle GAN-based method was obvious, and there 

was almost no noise affecting the visual effect of 

the section. We calculated the Signal-to-Noise Ratio 

(SNR) of the above denoising experiment results 

and presented them in Table 2. 

 

C. Processing of actual seismic data. 

We conducted experiments on actual 

seismic data from the Yuanba area to verify the 

performance of the 1-D SE Cycle GAN-based 

method in high-resolution processing of seismic 

signals. The seismic signals in this area are affected 

by various types of noise, and there are also 

multiple types of noise in the signals themselves, 

which seriously affect the quality and reliability of 

seismic signals and increase the difficulty of seismic 

data processing. We randomly selected 370 

continuous seismic signals from the data in the 

Yuanba area to form a two-dimensional seismic 

section, with each signal having a sampling time of 

300ms. We used traditional deconvolution, wavelet 

soft-threshold denoising, and 1-D SE  

 

TABLE II.  SNR AFTER DENOISING WITH THREE METHODS AT DIFFERENT NOISE LEVELS 

Method SNR1(dB) SNR2(dB) SNR3(dB) 

noise level 1 5 10 

deconvolution 9.75 11.46 12.04 

Wavelet soft-

thresholding 
11.85 12.61 14.31 
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1-D SE Cycle GAN 13.19 14.28 14.65 

 

Cycle GAN-based methods to process 

these 370 signals, and the results are shown in Fig. 

12. The following 740 continuous seismic signals 

were randomly selected from different locations in 

the same region to form a two-dimensional seismic 

section, with each signal having a sampling time of 

600ms. The traditional deconvolution method, the 

wavelet soft threshold denoising method, and the 1-

D SE Cycle GAN-based method were used to 

process these 740 signals, and the results are shown 

in Fig. 13. 

 

 
Fig. 12. Different denoising results of various methods on real seismic section (a. Original section b. Traditional 

deconvolution method c. Wavelet soft thresholding method d. 1-D SE Cycle GAN-based method) 

 

 
Fig. 13. Different denoising results of various methods on real seismic section (a. Original section b. Traditional 

deconvolution method c. Wavelet soft thresholding method d. 1-D SE Cycle GAN-based method) 
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It can be seen that the original seismic 

section is contaminated to a certain extent by noise, 

with most of the noise components concentrated in 

the middle and high amplitude parts. The traditional 

deconvolution method, wavelet soft thresholding 

method, and 1-D SE Cycle GAN-based method all 

have a certain degree of denoising effect. However, 

compared with the wavelet soft thresholding 

method and the 1-D SE Cycle GAN-based method, 

the control effect of the traditional deconvolution 

method on small noise is not ideal, and some details 

in the original section are still covered by noise. 

Comparing Fig. 12(c), 12(d), 13(c), and 13(d), it can 

be seen that the useful information contained in the 

original noisy section is shown more clearly and 

completely in Fig. 12(d) and 13(d), especially the 

part marked by the black dashed box. The 1-D SE 

Cycle GAN-based method maximally preserves the 

useful signals of the original section while removing 

most of the noise. Therefore, the 1-D SE Cycle 

GAN-based method also has significant advantages 

in denoising processing of actual seismic signals, 

preserving most of the real signal details in the 

actual signal while removing most of the noise, and 

providing better guidance for the determination of 

strata and faults. 

 

III. CONCLUSION 
The noise contained in seismic signals is 

often random noise, distributed in both the low-

frequency and high-frequency parts of seismic 

signals. By adding a self-attention mechanism based 

on the compression and excitation network to the 1-

D Cycle GAN, the 1-D SE Cycle GAN is obtained, 

which has the property of weighting and combining 

the input signals, thus more effectively removing 

noise and retaining useful information of the signal. 

According to the results of the residual section 

experiments, the 1-D Cycle GAN removes useful 

information of the signal as noise during the 

denoising process, while the method based on 1-D 

SE Cycle GAN removes more noise and retains 

useful information of the signal. Then, by 

comparing with traditional deconvolution methods 

and wavelet soft threshold denoising methods, 

conclusions can be drawn through synthetic 

experiments: under low noise levels, the method 

based on 1-D SE Cycle GAN and the wavelet soft 

threshold denoising method have similar effects and 

can effectively improve the signal-to-noise ratio. 

However, as the noise level increases, the wavelet 

soft threshold denoising method becomes less 

effective due to the difficulty of distinguishing high-

frequency amplitude noise. The method based on 1-

D SE Cycle GAN can learn the characteristics of 

this noise and effectively remove it, maintaining a 

higher signal-to-noise ratio even under high noise 

levels. When comparing the actual data, the 

denoising method based on 1-D SE Cycle GAN 

removes more noise, retains more details of the 

original seismic signals, and makes the geological 

layers and faults clearer.  
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